
Fairness-aware Maximal Clique Enumeration

Minjia Pan†, Rong-Hua Li†, Qi Zhang†, Yongheng Dai‡, Qun Tian‡, Guoren Wang†
†Beijing Institute of Technology, Beijing, China; ‡Diankeyun Technologies Ltd, Beijing, China;

panminjia_cs@163.com; lironghuabit@126.com; qizhangcs@bit.edu.cn;
toyhdai@163.com; tianqun@cetccloud.com; wanggrbit@126.com;

Abstract—Cohesive subgraph mining on attributed graphs is
a fundamental problem in graph data analysis. Existing cohesive
subgraph mining algorithms on attributed graphs do not consider
the fairness of attributes in the subgraph. In this paper, we
for the first time introduce fairness into the widely-used clique
model to mine fairness-aware cohesive subgraphs. In particular,
we propose two novel fairness-aware maximal clique models on
attributed graphs, called weak fair clique and strong fair clique
respectively. To enumerate all weak fair cliques, we develop
an efficient backtracking algorithm called WFCEnum equipped
with a novel colorful k-core based pruning technique. We also
propose an efficient enumeration algorithm called SFCEnum to
find all strong fair cliques based on a new attribute-alternatively-
selection search technique. To further improve the efficiency,
we also present several non-trivial ordering techniques for both
weak and strong fair clique enumeration. The results of extensive
experiments on four real-world graphs demonstrate the efficiency
and effectiveness of the proposed algorithms.

I. INTRODUCTION

Complex networks in the real world, such as social net-
works, communication networks and biological networks, can
be modeled as graphs. Graph analysis techniques have been
extensively studied to help to understand the features of net-
works. Community detection, which aims at finding cohesive
subgraph structures in networks, is a fundamental problem in
graph analysis that has attracted much attention for decades
[17], [23], [31]. As an elementary model, clique has been
widely used to reveal dense community structures of graphs
[14], [22]. Mining cliques in a graph has a wide range of
applications, including mining overlapping communities in
social networks [49], identifying protein complexes in protein
networks [48], and finding groups with abnormal transactions
in financial networks [6].

Many real-life networks are often attributed graphs where
vertices or edges are associated with attribute information.
There are a number of studies that focus on finding commu-
nities on attributed graphs [13], [19], [24], [33], [43], [45]–
[47]. However, those works either require high correlation
of attributes in a community or aim to find communities
satisfying some attribute constraints. None of them takes into
account the fairness of attributes in the community.

Recently, the concept of fairness is mainly considered in the
machine learning community [11], [15], [44]. Many studies re-
veal that a rank produced by a biased machine learning model
can result in systematic discrimination and reduce visibility for
an already disadvantaged group (e.g., incorporations of gender
and racial and other biases) [5], [36], [50]. Therefore, many
different definitions of fairness, such as individual fairness,
group fairness [44], and related algorithms were proposed to
generate a fairness ranking. Some other studies focus on the
fairness in classification models, such as demographic parity
[11] and equality of opportunity [15]. All these studies suggest

that the concept of fairness is very important in machine
learning models.

Motivated by the concept of fairness in machine learning,
we introduce fairness for an important graph mining task,
i.e., mining cliques in a graph. Mining fair cliques has a
variety of applications. For example, consider an online social
network where each user has an attribute denoting his/her
gender. We may want to find a clique community in which both
the number of males and females reach a certain threshold,
or the number of males and females are exactly the same.
Compared to the traditional clique communities, the fair clique
communities can overcome gender bias. In a collaboration
network, each vertex has an attribute representing his/her
research topic. The fair cliques can be used to identify research
groups who work closely and also have diverse research topics,
because the fair cliques have already considered the fairness
over different research topics. Finding such fair cliques can
help identify the groups of experts from diverse research areas
to conduct a particular task.

In this paper, we focus on the problem of finding fairness-
aware cliques in attributed graphs where each vertex in the
graph has one attribute. We propose two new models to
characterize the fairness of a clique, called weak fair clique
and strong fair clique respectively. A weak fair clique is
a maximal subgraph which 1) is a clique, and 2) requires
the number of vertices of every attribute value is no less
than a given threshold k, thus it can guarantee the fairness
over all attributes to some extent. A strong fair clique is a
maximal subgraph in which 1) the vertices form a clique,
and 2) the number of vertices for each attribute value is
exactly the same, thus it can fully guarantee the fairness over
all attributes. We show that finding all weak or strong fair
cliques is NP-hard. Furthermore, the problem of enumerating
all strong fair cliques is often much more challenging than
the problem of enumerating all weak fair cliques. To solve
our problems, we first propose a backtracking enumeration
algorithm called WFCEnum with a novel colorful k-core based
pruning technique to enumerate all weak fair cliques. Then,
we propose a SFCEnum algorithm to enumerate all strong
fair cliques based on a new attribute-alternatively-selection
search strategy. We also develop several non-trivial ordering
techniques to further speed up the WFCEnum and SFCEnum
algorithms. Below, we summarize the main contributions of
this paper.

New models. We propose a weak fair clique and a strong
fair clique model to characterize the fairness of a cohesive
subgraph. To the best of our knowledge, we are the first
to introduce the concept of fairness for cohesive subgraph
modeling.

Novel algorithms. We first propose a novel concept called
colorful k-core and develop a linear-time algorithm to compute

259

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00024

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
00

24

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

the colorful k-core. We show that both weak fair cliques
and strong fair cliques must be contained in the colorful k-
core, thus we can use it for pruning unpromising vertices in
enumerating weak or strong fair cliques. Then, we propose a
backtracking algorithm WFCEnum to enumerate all weak fair
cliques with a colorful k-core induced ordering. To enumerate
all strong fair cliques, we further develop a novel fairness k-
core based pruning technique which is more effective than the
colorful k-core pruning. We also propose a backtracking al-
gorithm SFCEnum with a new attribute-alternatively-selection
search strategy to enumerate all strong fair cliques. In addition,
a heuristic ordering method is also proposed to further improve
the efficiency of the strong fair clique enumeration algorithm.
Extensive experiments. We conduct extensive experiments

to evaluate the efficiency and effectiveness of our algorithms
using four real-world networks. The results show that the
colorful k-core based pruning technique is very powerful
which can significantly prune the original graph. The results
also show that the WFCEnum and SFCEnum algorithms are
efficient in practice. Both of them can enumerate all fair
cliques on a large graph with 2,523,387 vertices and 7,918,801
edges in less than 3 hours. In addition, we conduct a case study
on DBLP to evaluate the effectiveness of our algorithms. The
results show that both WFCEnum and SFCEnum can find fair
communities with different research areas, and SFCEnum can
further keep balance of attribute values in the subgraph.
Reproducibility. The source code of this paper is released at

Github: https://github.com/honmameiko22/fairnessclique for
reproducibility purpose.

II. PRELIMINARIES

Let G = (V,E,A) be an undirected, unweighted attributed
graph with n = |V | and m = |E|. Each vertex u in G has
an attribute A and we denote its value as u.val. Let Aval be
the set of all possible values of attribute A, namely, Aval =
{u.val|u ∈ V }. The cardinality of Aval is denoted by An, i.e.,
An = |Aval|. For brevity, we also represent Aval as Aval =
{ai|0 ≤ i < An}. We denote the set of neighbors of a vertex
u by N(u), and the degree of u by d(u) = |N(u)|. For a
vertex subset S ⊆ V , the subgraph induced by S is defined as
GS = (S,ES , A), where ES = {(u, v)|(u, v) ∈ E, u, v ∈ S}
and A is the vertex attribute in G.

In a graph G, a clique C is a complete subgraph where
each pair of vertices in C is connected. Based on the concept
of clique, we present two fairness-aware clique models as
follows.

Definition 1: (Weak fair clique) Given an attributed graph
G and an integer k, a clique C of G is a weak fair clique of
G if (1) for each value ai ∈ Aval , the number of vertices
whose value equals ai is no less than k; (2) there is no clique
C ′ ⊃ C satisfying (1).

Example 1: Consider a graph G = (V,E,A) with Aval =
{a, b} in Fig. 1(a). Suppose that k = 3. By Definition 1,
we can see that the subgraph C induced by the vertex set
{v1, v2, v3, v4, v5, v6, v7} is a weak fair clique. This is because
the number of vertices with attribute value a in C is 4 (
� k = 3), and with attribute b is 3 (� k = 3). Moreover,
there does not exist a subgraph C ′ that contains C and also
satisfies the condition (1) in Definition 1. �

Clearly, by Definition 1, the weak fair clique model exhibits
the fairness property over all types of vertices (with different

(a) G (b) colorful G

Fig. 1. Running example

attribute values), as it requires the number of vertices for each
attribute in the subgraph must be no less than k. However,
the weak fair clique model may not strictly guarantee the
fairness for all attributes. Below, we propose a strong fair
clique definition which strictly requires the subgraph has the
same number of vertices for each attribute.

Definition 2: (Strong fair clique) Given an attributed graph
G and an integer k, a clique C of G is a strong fair clique
of G if (1) for each ai ∈ Aval, the number of vertices whose
value equals ai is no less than k; (2) the number of vertices
for each ai is exactly the same; (3) there is no clique C ′ ⊃ C
satisfying (1) and (2).

Example 2: Reconsider the attributed graph G in Fig. 1(a).
Again, we assume that k = 3. By definition, we can easily
check that the subgraph induced by {v1, v2, v3, v4, v5, v6}
is a strong fair clique. Note that the subgraph induced by
{v1, v2, v3, v4, v5, v6, v7} is a weak fair clique, but it is not
a strong fair clique, as it violates the condition (2) in Defini-
tion 2. �
Remark. According to Definition 1 and Definition 2, the
parameter k in our fair clique models provides a lower bound
on the size of a clique. There are at least k × An vertices in
both a weak fair clique and a strong fair clique. Note that the
guarantee of fairness in our models lies in that no matter how
large a clique is, every attribute owns at least k vertices. The
weak fair clique model is suitable to the applications which
require a lower-bound guarantee of fairness. The strong fair
clique, however, aims at finding absolutely fair cliques, which
can be applied in the scenarios like finding a group of people
where the number of females equals that of males.

In addition, another potential definition of fairness-aware
clique is to consider the difference of the number of each
attribute in the clique. Such a definition, however, has a
limitation. If we only guarantee that the difference of the
number of each attribute is below a given threshold, we may
miss fairness in some cases. For example, suppose that we
have three attributes A, B and C, and the given threshold
is 5. Then, we may find a 5-clique that has 5 A vertices,
0 B vertices, and 0 C vertices which is clearly unfair for the
attributes B and C. However, our definitions of fair cliques
can guarantee that each attribute has at least k vertices.

Problem statement. Given an attributed graph G and an
integer k, our goal is to enumerate all weak fair cliques and
strong fair cliques in G respectively.

Example 3: Reconsider the attributed graph G in Fig. 1(a).
Suppose that k equals 2. We aim to find all 2-weak fair
cliques and 2-strong fair cliques in G. The answer of 2-
weak fair clique enumeration is C = {v1, v2, v3, v4, v5, v6, v7}
because it is the maximal clique satisfying Definition 1. We
can also find that there are three 2-strong fair cliques in G,
i.e., C1 = {v1, v2, v3, v4, v5, v6}, C2 = {v1, v2, v7, v4, v5, v6},

260

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

and C3 = {v2, v3, v7, v4, v5, v6}, thus they are the answers for
2-strong fair clique search. Clearly, all 2-strong fair cliques are
subgraphs of the 2-weak fair clique. �
Challenges. We first discuss the hardness of the weak fair
clique enumeration problem. Considering a special case:
k = 0. Clearly, the weak fair clique enumeration problem
degenerates to the traditional maximal clique enumeration
problem which is NP-hard. Thus, finding all weak fair cliques
is also NP-hard. Enumerating strong fair cliques is more
challenging than enumerating all weak fair cliques for the
following reasons. (1) The number of strong fair cliques is
often much larger than that of weak fair cliques. By definition,
we can see that a strong fair clique is always contained in a
weak fair clique. On the contrary, a weak fair clique is not
necessarily a strong fair clique. (2) Each weak fair clique must
be a traditional maximal clique, but the strong fair clique may
not be a traditional maximal clique (see Example 2), which
means that it is difficult to check the maximality of strong fair
cliques.

Unlike traditional maximal cliques, both weak fair cliques
and strong fair cliques have an additional attribute value con-
straint, thus a potential solution is to apply attribute informa-
tion to prune the search space. The challenges of our problems
are (1) how can we efficiently prune unpromising vertices,
and (2) how to maintain the fair clique property during the
search procedure. To tackle the above challenges, we will
propose the WFCEnum algorithm with a new colorful k-core
based pruning technique for weak fair clique enumeration;
and propose the SFCEnum algorithm with a novel attribute-
alternatively-selection strategy for enumerating all strong fair
cliques. Both of our algorithms are able to correctly find all
fair cliques and significantly improve the efficiency compared
to the baseline enumeration algorithm.

III. WEAK FAIR CLIQUE ENUMERATION

In this section, we present the WFCEnum algorithm to enu-
merate all weak fair cliques. The key idea of WFCEnum is that
it first prunes the vertices that are not contained in any weak
fair clique based on a novel concept called colorful k-core.
Then, it performs a carefully-designed backtracking search
procedure to enumerate all results. Below, we first introduce
the concept of colorful k-core, followed by a heuristic search
order and the WFCEnum algorithm.

A. The colorful k-core pruning

Before introducing the colorful k-core based pruning tech-
nique, we first briefly review the problem of vertex coloring
for a graph. The goal of vertex coloring is to color the vertices
such that no two adjacent vertices have the same color [18],
[26]. Given a graph G = (V,E), we denote by color(u) the
color of a vertex u ∈ V . Based on the vertex coloring, we
define the colorful degree of a vertex as follows.

Definition 3: (Colorful degree) Given an attributed graph
G = (V,E,A) and an attribute value ai ∈ Aval. The colorful-
degree of vertex u based on ai, denoted by Dai(u,G), is the
number of colors of u’s neighbors whose attribute value is ai,
i.e., Dai

(u,G) = |{color(v)|v ∈ N(u), v.val = ai}|.
Clearly, each vertex u has An colorful degrees. Let

Dmin(u,G) denotes the minimum colorful degree of a vertex
u, i.e., Dmin(u,G) = min{Dai(u,G)|ai ∈ Aval}. We omit

Algorithm 1: ColorfulCore
Input: G = (V,E,A), an integer k
Output: The colorful k-core Ĝ

1 Color all vertices by invoking a degree-based greedy coloring algorithm;
2 Let Q be a priority queue; Q ← ∅;
3 for u ∈ V do
4 for v ∈ N(u) do
5 if Mu(v.val, color(v)) = 0 then Dv.val(u)++;
6 Mu(v.val, color(v))++;

7 Dmin(u) ← min{Dai
(u)|ai ∈ Aval};

8 for u ∈ V do
9 if Dmin(u) < k then

10 Q.push(u); Remove u from G;

11 while Q �= ∅ do
12 u ← Q.pop();
13 for v ∈ N(u) do
14 if v is not removed then
15 Mv(u.val, color(u))−−;
16 if Mv(u.val, color(u)) ≤ 0 then
17 Du.val(v) ← Du.val(v) − 1;
18 Dmin(v) ← min{Dai

(v)|ai ∈ Aval};
19 if Dmin(v) < k then
20 Q.push(v); Remove v from G;

21 The colorful k-core Ĝ ← the remaining graph of G;

22 return Ĝ;

the symbol G in Dai
(u,G) and Dmin(u,G) when the context

is clear. Below, we give the definition of colorful k-core.

Definition 4: (Colorful k-core) Given an attributed graph
G = (V,E,A) and an integer k, a subgraph H = (VH , EH , A)
of G is a colorful k-core if: (1) for each vertex u ∈ VH ,
Dmin(u,H) ≥ k; (2) there is no subgraph H ′ ⊆ G that
satisfies (1) and H ⊂ H ′.

Based on Definition 4, we have the following lemma.

Lemma 1: Given an attributed graph G = (V,E,A) and a
parameter k, any weak fair clique must be contained in the
colorful (k-1)-core of G.

Proof: Assume that C is a weak fair clique and consider
a vertex u ∈ C. Based on Definition 1, for each ai ∈ Aval, u
has at least k − 1 neighbors in C whose attribute value is ai.
Since the vertices with the same color must not be adjacent,
we have Dai(u,C) ≥ Dmin(u,C) ≥ k−1 for each ai ∈ Aval.
Thus, if a subgraph g ⊆ G satisfies Dmin(u, g) < k − 1, C
must not be included in g. �

Equipped with Lemma 1, we propose a novel algorithm,
called ColorfulCore, to compute the colorful-k-core of G,
which can be used to prune unpromising vertices in the
weak fair clique enumeration procedure. The pseudo-code
of ColorfulCore is shown in Algorithm 1. The algorithm
computes the colorful-k-core of G by iteratively peeling
vertices from the remaining graph based on their colorful
degrees, which is a variant of the classic core decomposition
algorithm [4], [25] (lines 8-20). Specifically, it first performs
greedy coloring on G which colors vertices based on the order
of degree [16], [27] (line 1). Note that finding the optimal
coloring is an NP-hard problem [18], [26], thus we use a
greedy algorithm to compute a heuristic coloring which is
sufficient for defining the colorful k-core. A priority queue
Q is employed to maintain the vertices with smaller Dmin

which will be removed during the peeling procedure (line
2). ColorfulCore computes the colorful degrees of all vertices
to initialize Q (lines 3-10). Mu records the number of u’s

261

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

neighbors whose attribute values and colors are the same.
After that, the algorithm computes the colorful k-core of G
by iteratively peeling vertices from the remaining graph based
on their colorful degrees (lines 11-20). Finally, ColorfulCore
returns the remaining graph Ĝ as the colorful k-core. Below,
we analyze the complexity of Algorithm 1.

Example 4: Consider the graph G = (V,E,A) in Fig. 1(a).
Assume that we want to search all 2-weak fair cliques. By
Lemma 1, we invoke ColorfulCore to calculate the colorful-1-
core of G. Specifically, we first color the vertices of G using
the greedy method. Then, we obtain a colored graph which
is illustrated in Fig. 1(b) with seven different colors. Take the
vertex v8 as an example. v8 connects to v1 and v7 in G and
both of them have attribute value a, thus Da(v8) = 2 and
Db(v8) = 0 hold. Due to Dmin(v8) = Db(v8) = 0 < 1, v8
is not contained in any 2-weak fair clique. Thus, ColorfulCore
removes v8 from G. The removal of v8 subsequently updates
the colorful-degrees of v1 and v7. ColorfulCore repeatedly
removes vertices until all the remaining vertices satisfying
Dmin ≥ 1. Finally, we can obtain a subgraph induced by the
vertex set V −{v8} which is a colorful-1-core with Dmin = 2.

�
Theorem 1: Algorithm 1 consumes O(E + V) time using

O(V ×An×color) space, where color denotes the total number
of colors.

Proof: In line 1, the greedy coloring procedure takes
O(E+V) time [16]. In lines 2-7, we can easily derive that the
algorithm takes O(E+V) time. In lines 11-20, the algorithm
can update Mv for each v ∈ N(u) in O(1) time. For each
edge (u, v), the update operator only performs once, thus the
total time complexity is bounded by O(E+V). For the space
complexity, the algorithm needs to maintain the structure Mv

for each vertex which takes at most O(V ×An× color) space
in total. �
B. The colorful k-core based ordering
WFCEnum finds all weak fair cliques by performing a

backtracking search procedure. Hence, the search order of
vertices is vital as the search spaces with various orderings
are significantly different. Below, we propose a heuristic
order based on the colorful k-core, called ColorOD, which
can significantly improve the performance of WFCEnum as
confirmed in our experiments.

Consider a vertex u and its neighbor v with Dmin(u,G) ≥
(k − 1) > Dmin(v,G). According to Lemma 1, u may be
contained in a weak fair clique but v is impossible. Thus, we
can construct a smaller subgraph induced by u’s neighbors
whose Dmin values are no less than Dmin(u,G) to search
weak fair cliques. Inspired by this, we design a search order
denoted by ColorOD; and we propose an algorithm, called
CalColorOD, to calculate such an order. Similar to the idea of
ColorfulCore, CalColorOD iteratively removes a vertex with
the minimum Dmin from the remaining graph. The vertices-
removal ordering by this procedure is denoted as ColorOD.

Algorithm 2 outlines the pseudo-code of CalColorOD. For
each vertex u, we use O(u) to indicate the rank of u in our
order O. A heap-based structure H is employed to maintain
the vertices with their Dmin values, which always pops out the
pair (u,Dmin(u)) with minimum Dmin. CalColorOD first cal-
culates Dmin(u) for every vertex u and pushes (u,Dmin(u))
into H (lines 3-5). Then, CalColorOD iteratively pops out the

Algorithm 2: CalColorOD
Input: A connected graph G = (V,E)
Output: The ColorOD ordering O

1 Let B be an array with B(i) = false, 1 ≤ i ≤ |V |;
2 O ← ∅; H ← ∅; cnt ← 0;
3 for u ∈ V do
4 Calculate Dmin(u) as lines 4-7 in Algorithm 1;
5 H.push(u,Dmin(u));

6 while H �= ∅ do
7 (u,Dmin(u)) ← H.pop();
8 O[u] = cnt; B(u) ← true; cnt++;
9 for v ∈ N(u) do

10 if B(v) = false then
11 Mv(u.val, color(u))−−;
12 if Mv(u.val, color(u)) ≤ 0 then
13 Du.val(v)−−; dif ← Dmin(v) − Du.val(v);
14 if dif �= 0 then
15 Dmin(v) ← Du.val(v); H.update(v, dif);

16 return O;

vertex with minimum Dmin from H and records its rank in O
(lines 6-15). As a vertex is removed, we maintain the Dmin

values for its neighbors and update H (lines 9-15). It is easy
to check that the time and space complexities of Algorithm 2
are the same as those of Algorithm 1.

The reason why ColorOD works is that the search procedure
beginning with vertices that have low ranks in ColorOD tends
to be less possible to form weak fair cliques. Note that the
main searching time of the enumeration algorithm is spent
on the vertices that have a dense and large neighborhood.
ColorOD can guarantee that the unpromising vertices are
explored first, thus reducing the number of candidates of the
vertices that have a dense and large neighborhood.

C. The weak fair clique enumeration algorithm
The main idea of WFCEnum is to prune the unpromising

vertices first, and then perform the backtracking procedure to
find all weak fair cliques. Unlike the traditional maximal clique
enumeration, WFCEnum is equipped with a colorful k-core-
based pruning rule and a carefully-designed ColorOD ordering
technique, which can significantly reduce the search space.
The pseudo-code of WFCEnum is outlined in Algorithm 3.

The WFCEnum algorithm works as follows. It first initial-
izes four sets R, X , C, and Res (line 1). The set R represents
the currently-found clique which may be extended to a weak
fair clique. X is the set of vertices in which every vertex can
be used to expand the current clique R but has already been
visited in previous search paths. C is the candidate set that can
be used to extend the current clique R in which each vertex
must be neighbors of all vertices in R. After initialization,
WFCEnum performs ColorfulCore to prune the vertices that
are definitely not contained in any weak fair clique (line 2).
The algorithm invokes the BackTrack procedure to find all
weak fair cliques in the pruned graph Ĝ (lines 4-9). Note
that Ĝ may have several connected colorful (k − 1)-cores, so
BackTrack should be performed on each connected component
in Ĝ. An array B is used to indicate whether a vertex u has
been searched, and it is initialized as false for each vertex.
For an unvisited vertex u, WFCEnum identifies the connected
colorful-(k − 1)-core CC containing u and sets B as true for
all vertices within CC to denote that CC will not be searched
again (line 6). WFCEnum then calls CalColorOD to derive
the search order ColorOD of vertices in CC, and performs

262

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

the BackTrack procedure on CC to enumerate all weak fair
cliques (lines 7-8).

The workflow of BackTrack is depicted in lines 10-26 of
Algorithm 3. It first identifies whether the current R is a weak
fair clique (line 11). R is an answer if and only if C = ∅ and
X = ∅. C is empty means that no vertex can be added into R.
In addition, the set X must be empty, otherwise any vertex in
X can be added into R and makes R non-maximal. If R is not
a weak fair clique, we add each vertex u ∈ C into R and start
the next iteration of BackTrack (lines 12-26). Note that each
candidate in C is a neighbor of all vertices in R, therefore
after adding u into R, C must be updated to keep out those
vertices that are not adjacent with u (lines 15-17). Here, we
only consider the vertices whose rank is larger than u’s rank
to avoid finding the same clique repeatedly. After obtaining
the updated sets Ĉ and R̂, if |Ĉ| + |R̂| < k × An holds,
BackTrack terminates as the sets cannot reach the minimum
size of a weak fair clique (line 18). On the other hand, we use
R̂cnt and Ĉcnt to denote the number of vertices whose attribute
value is ai in R̂ and Ĉ, respectively (line 17 and line 19).
By checking the count for each ai ∈ Aval, we can quickly
determine whether the current/next clique is promising. For
any ai ∈ Aval, if R̂cnt(ai) + Ĉcnt(ai) < k holds, we cannot
obtain a weak fair clique even if we add the whole set C into
R. This is because the condition (1) of Definition 1 is not
satisfied, thus BackTrack terminates (lines 20-23). Otherwise,
the procedure derives the set X̂ by adding u’s neighbors into
X , and then performs the next iteration (lines 24-25). After
exploring the vertex u, BackTrack adds it into X because
u has already been searched in the current search path and
cannot be processed in the following recursions (line 26).

IV. STRONG FAIR CLIQUE ENUMERATION

In this section, we first develop an efficient strong fair clique
enumeration algorithm with a novel pruning technique for the
two-dimensional (2D) case, where the attributed graph has
only two types of attributes (i.e., |An| = 2). Then, we will
show how to extend our enumeration algorithm to handle the
high-dimensional case (|An| > 2).

A. The pruning technique for 2D case

Suppose that the attributed graph G = (V,E,A) has two
types of attributes, i.e., Aval = {a1, a2}. The neighbors of a
vertex u can be divided into hu groups by coloring where each
group contains vertices with the same color. Clearly, by the
property of coloring, only one vertex can be selected from a
group to form a clique with u. Below, we give a new definition
of fairness degree of a vertex.

Definition 5: (Fairness degree) Given a colored attributed
graph G = (V,E,A) with Aval = {a1, a2}, the fairness
degree of u, denoted by FD(u), is the largest number of
groups from which we select vertices so that the number of
vertices with attribute a1 is the same as the number of vertices
with attribute a2.

By Definition 5, we can easily verify that the fairness degree
of a vertex u, i.e., FD(u), is an upper bound of the size of the
strong fair clique containing u. Therefore, for any vertex u, if
FD(u) < 2×(k−1), then u cannot be contained in any strong
fair clique, because any vertex in a strong fair clique must have
a fairness degree no less than 2× (k− 1) by Definition 2. As

Algorithm 3: WFCEnum
Input: G = (V,E,A), an integer k
Output: The set of weak fair cliques Res

1 Res ← ∅; R ← ∅; X ← ∅; C ← ∅;

2 Ĝ = (V̂ , Ê) ← ColorfulCore(G, k − 1);

3 Initialize an array B with B(i) = false, 1 ≤ i ≤ |V̂ |;
4 for u ∈ V̂ do
5 if B(u) = false then
6 CC ← ConnectedGraph(u,B);
7 O ← CalColorOD(CC);
8 R ← ∅; X ← ∅; BackTrack(R,CC,X,O);

9 return Res;

10 Procedure BackTrack(R,C,X,O)
11 if C = ∅ and X = ∅ then Res ← Res ∪ R;
12 for u ∈ C in non-descending ColorOD order do
13 R̂ ← R ∪ u; Ĉ ← ∅; flag ← false;

14 Let Ĉcnt, R̂cnt be the arrays of size An;
15 for v ∈ C do
16 if v ∈ N(u) and O(v) > O(u) then
17 Ĉ ← Ĉ ∪ v; Ĉcnt(v.val)++;

18 if |Ĉ| + |R̂| < k × An then continue;

19 for v ∈ R̂ do R̂cnt(v.val)++;
20 for ai ∈ Aval do
21 if R̂cnt(ai) + Ĉcnt(ai) < k then
22 flag ← true; break;

23 if flag = true then continue;

24 X̂ ← X ∩ N(u);

25 BackTrack(R̂, Ĉ, X̂,O);
26 X ← X ∪ u;

a consequence, we can safely prune the vertex whose fairness
degree is less than 2× (k − 1).

A remaining question is how can we efficiently compute the
fairness degree for a vertex u. Below, we develop an efficient
approach to answer this question.

Based on the attribute values, the hu color groups can be
divided into three categories: (1) OA1Group: is a group that
involves vertices of attribute a1 only; (2) OA2Group: is a group
that contains vertices of attribute a2 only; (3) MixGroup: is a
group that contains vertices of both a1 and a2. Let c1, c2, and
cm be the number of the OA1Group groups, the OA2Group
groups, and the MixGroup groups respectively. Suppose with-
out loss of generality that c1 ≤ c2. Then, if cm ≤ (c2 − c1)
holds, we can easily derive that FD(u) = 2 × (cm + c1).
Otherwise, we have FD(u) = 2× ((cm − (c2 − c1))/2+ c2).
Based on these results, we can easily derive the fairness degree
for each vertex by using the three quantities c1, c2, and cm.
The pseudo-code of our algorithm to compute the fairness is
given in lines 17-29 of Algorithm 4.

Based on the fairness degree, we can iteratively prune the
vertices with fairness degrees smaller than 2× (k−1). Below,
we introduce a concept called fairness k-core to characterize
the reduced subgraph after iteratively peeling the unqualified
vertices.

Definition 6: (fairness k-core) Given an attributed graph
G = (V,E,A) with Aval = {a1, a2} and an integer k, a
subgraph H = (VH , EH , A) of G is a fairness k-core if: (1)
for each u ∈ VH , FD(u) ≥ 2k; (2) there is no subgraph
H ′ ⊆ G that satisfies (1) and H ⊂ H ′.

By Definition 6, we can show that any strong fair clique
must be contained in the fairness k-core.

Lemma 2: Given an attributed graph G = (V,E,A) with
Aval = {a1, a2} and a parameter k, any strong fair clique
must be contained in the fairness (k − 1)-core of G.

263

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: FairnessCore
Input: G = (V,E,A), an integer k
Output: The reduced graph Ĝ

1 G = (V ,E) ← ColorfulCore(G, k);

2 Let FD be an array of size |V |; Let Q be a queue;

3 for u ∈ V do
4 for v ∈ N(u) do
5 Group(u, color(v), v.val)++;

6 FD(u) ← FairDegCal(u,Group);
7 if FD(u) < 2 × k then
8 Remove u from G; Q.push(u);

9 while Q �= ∅ do
10 u ← Q.pop();
11 for v ∈ N(u) do
12 if v is removed then continue;
13 Group(v, color(u), u.val) − −;
14 Calculate FD(v) and update Q as lines 6-8;

15 Ĝ ← the remaining graph of G;

16 return Ĝ;

17 Procedure FairDegCal(u,Group)
18 c1 ← 0; c2 ← 0; cm ← 0;
19 for each color cr do
20 if Group(u, cr, a1) ≥ 1 and Group(u, cr, a2) = 0 then

c1 ← c1 + 1;
21 if Group(u, cr, a2) ≥ 1 and Group(u, cr, a1) = 0 then

c2 ← c2 + 1;
22 if Group(u, cr, a1) ≥ 1 and Group(u, cr, a1) ≥ 1 then

cm ← cm + 1;

23 if c1 ≤ c2 then
24 if cm � (c2 − c1) then FD(u) ← 2× ((cm − (c2 − c1))/2+ c2);
25 else FD(u) ← 2 × (cm + c1);

26 else
27 if cm � (c1 − c2) then FD(u) ← 2× ((cm − (c1 − c2))/2+ c1);
28 else FD(u) ← 2 × (cm + c2);

29 return FD(u);

Proof: Consider a strong fair clique C. According to
Definition 2, assume there are k vertices of attribute a1 and k
vertices of attribute a2 in C. For an arbitrary vertex u in C, we
suppose that u.val = a1. There are k− 1 vertices of attribute
a1 and k vertices of attribute a2 in u’s neighbors. Therefore,
after performing FairDegCal for u, we have c1 = k−1, c2 = k
and cm = 0. Further, FD(u) is equal to 2(k− 1). Due to the
arbitrariness of u, the fairness degree of each vertex in C
must reach 2(k − 1), too. Hence, C must be contained in the
fairness-(k − 1)-core of G. �

Example 5: Reconsider the attributed graph in Fig. 1(b).
Suppose that k = 3. By Lemma 2, we consider the fairness
2-core of G. For vertex v8, v8 has two neighbors v1 and v7,
and both of them have attribute value a. Clearly, we have
FD(v8) = 0 < 2×2, thus v8 is not contained in the fairness 2-
core. For vertex v1, the initial value of c1, c2 and cm are 2, 3, 1.
Obviously, cm + c1 = c2, thus we have FD(v1) = 6 > 4.
Similarly, the fairness degrees of the other vertices are all equal
to 6. Therefore, the subgraph induced by V \{v8} is a fairness
2-core. Clearly, such a subgraph contains the strong fair clique
as illustrated in Example 2. �

Similar to the colorful k-core computation algorithm, we
can also devise a peeling algorithm to compute the fairness
k-core by iteratively removing the vertices that have fairness
degrees smaller than 2k. The pseudo-code of our algorithm
is outlined in Algorithm 4. Note that a strong fair clique is
always contained in a weak fair clique, thus we can first invoke
ColorfulCore to prune vertices that are definitely not included
in the weak fair cliques before computing the fairness k-core

of G (line 1).

Theorem 2: Algorithm 4 consumes O((E+V)×color) time
using O(V × color) space.

Proof: In line 1, Algorithm 4 invokes Algorithm 1 which
takes O(V +E) time and O(V ×color) space (since An = 2).
The FairDegCal procedure takes at most O(color) time for
each vertex. Therefore, the total time overhead taken in lines 3-
8 is O(V × color + E). In lines 9-14, for each edge (u, v),
the update cost is bounded by O(color), thus the total time
complexity is O((E + V)× color). For the space complexity,
the algorithm takes O(V ×color) space to maintain the Group
structure. �
Fairness k-core ordering. Similar to the ColorOD, we can
derive an ordering based on the fairness k-core, called FairOD,
for strong fair clique enumeration. In particular, FairOD is
derived by iteratively removing the vertex with the minimum
fairness degree which is very similar to the computational
procedure of ColorOD. We omit the details for brevity.

B. The enumeration algorithm for 2D case

Armed with the fairness k-core based pruning technique
and the FairOD ordering, we propose the SFCEnum algorithm
which alternatively picks a vertex of a specific attribute in the
backtracking procedure to enumerate all strong fair cliques.
The SFCEnum is shown in Algorithm 5. We use R to represent
the currently-found clique and C to denote the candidate set.
Similar to WFCEnum, SFCEnum first applies FairnessCore to
prune the vertices that are definitely not contained in strong
fair cliques (line 2) and then performs the StrongBackTrack
procedure for each connected fairness (k − 1)-core in Ĝ to
find all results (lines 4-8).

The pseudo-code of StrongBackTrack is outlined in lines
10-27 of Algorithm 5. Since a strong fair clique requires
that the numbers of vertices for each attribute ai are ex-
actly the same, we develop a novel attribute-alternatively-
selection mechanism to select vertices in each iteration. That
is, StrongBackTrack admits an input parameter aφ, which is
initialized to a0 (line 8), to indicate the attribute value of the
vertices to be selected in the current iteration. In the next
iteration, we pick the vertices with the attribute value aφ+1

to construct strong fair cliques (line 27). StrongBackTrack
divides the candidates in C into An sets, where the attribute
values of vertices in each set are the same, i.e., CA(ai) =
{u|u ∈ C, u.val = ai} (line 14). For each candidate u in
CA(aφ), we pick one vertex at a time as a part of the currently-
found clique and update the candidate set based on the FairOD
ordering (lines 16-27).

After adding u into the current clique, we can combine the
set R̂ and Ĉ to determine whether to call StrongBackTrack for
a more in-depth search (lines 16-27). Specifically, we classify
the candidates in Ĉ according to their attribute values and
record amin as the attribute value with the minimum number
of vertices (denoted by cmin) (line 20). Note that if there are
multiple attribute values satifying |ĈA(ai)| = cmin, we pick ai
with the largest i as amin. Clearly, cmin determines how large a
strong fair clique can be. We use Rc to denote the largest size
of possible strong fair cliques. If |R̂|%An = 0, the numbers
of vertices with various attribute values are the same in the
current set R̂, thus there are at most cmin × An vertices can
be added into R̂, and further we have Rc = cmin ×An + |R̂|

264

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: SFCEnum
Input: G = (V,E,A), an integer k
Output: The set of all strong fair cliques Res

1 Res ← ∅; R ← ∅; C ← ∅;

2 Ĝ = (V̂ , Ê) ← FairnessCore(G, k − 1);

3 Initialize an array B with B(i) = false, 1 ≤ i ≤ |V̂ |;
4 for u ∈ V̂ do
5 if B(u) = false then
6 CC ← ConnectedGraph(u,B);
7 O ← FairOD (CC);
8 R ← ∅; C ← ∅; StrongBackTrack(R,CC, a0,O);

9 return Res;

10 Procedure StrongBackTrack(R,C, aφ,O)
11 if |R|%An = 0 and |R| ≥ k × An then
12 if IsMaximal(C) then
13 Res ← Res ∪ R; return;

14 for u ∈ C then CA(u.val) ← CA(u.val) ∪ u;
15 for u ∈ CA(aφ) do
16 R̂ ← R ∪ u;
17 for v ∈ C do
18 if v ∈ N(u) and O(v) > O(u) then
19 Ĉ ← Ĉ ∪ v; ĈA(v.val) ← ĈA(v.val) ∪ v;

20 cmin ← min(|ĈA(ai)|); amin ← argminai
|ĈA(ai)|;

21 if |R̂|%An = 0 then Rc ← cmin × An + |R̂|;
22 else
23 if amin ∈ {a0, a1, ..., aφ} then
24 Rc ← cmin × An + (|R̂|/An + 1) × An;

25 else Rc ← (cmin − 1) × An + (|R̂|/An + 1) × An;

26 if Rc < k × An then continue;

27 StrongBackTrack(R̂, Ĉ, aφ+1,O);

(line 21). Otherwise, we calculate Rc and try to search a larger
clique (lines 22-27). By the attribute-alternatively-selection
strategy, in the current iteration with aφ, the number of vertices
with attribute value af (af ∈ {a0, ..., aφ}) is always one more
than that of vertices with ab (ab ∈ {aφ+1, ..., an−1}) in R. If
amin = af , we can add one vertex, for each ab, into R to

obtain a clique with size (|R̂|/An+1)×An, which is denoted
by RM . Note that there are still cmin ×An vertices that may
form a larger clique with RM . Therefore, we calculate Rc

as shown in line 24. Similarly, when amin = ab, we have
at most (cmin − 1) × An vertices that may add into RM to
construct a strong fair clique with size Rc (line 25). After
calculating Rc, we can terminate the search procedure early if
Rc < k × An, because it violates the definition of strong
fair clique in this case. Otherwise, we recursively perform
StrongBackTrack with the attribute value aφ+1 (line 27).

Maximality checking. The results of all traditional maximal
cliques and our weak fair cliques lie in the leaves of the
backtracking enumeration tree. We can check whether a weak
fair clique is found by C = ∅ and X = ∅ (see line 11 of
Algorithm 3). However, such a maximality checking method
cannot be used for strong fair cliques. The reasons are twofold:
(1) an empty candidate set C does not mean that we find
a strong fair clique because the number of vertices in R
corresponding to each attribute value may not be the same; (2)
even if X is not empty, R can be a strong fair clique. That is
to say, strong fair cliques can appear in the intermediate nodes
of the backtracking enumeration tree. Therefore, we need
to develop new solution to check the maximality for strong
fair cliques. We propose a maximality checking technique as
follows.

Once the StrongBackTrack procedure finds a clique whose

Algorithm 6: IsMaximal(C)

1 if |C| < An then return true;
2 else
3 for each ai ∈ Aval do
4 Ci ← {u|u ∈ C, u.val = ai};
5 if |Ci| = 0 return true;

6 Record ← C0;
7 for each ai ∈ {Aval − {a0}} do
8 SwapRecord ← ∅;
9 for vi ∈ Ci do

10 for r ∈ Record do
11 if vi is a neighbor of all vertices in r then
12 SwapRecord ← SwapRecord ∪ {r ∪ vi};

13 Record ← SwapRecord;

14 if Record �= ∅ return false;

size is equal to k′ × An with k′ ≥ k, we need to check the
maximality according to Definition 2. Since the vertices in C
are neighbors of all vertices in R, if we find any clique in C
with every attribute, R is definitely not a strong fair clique
as it violates the constraint (3) in Definition 2. Based on this,
we propose a verification method, called IsMaximal, which is
shown in Algorithm 6. Specifically, if the size of C is less than
An, which means adding all vertices in C will not destroy the
fairness property of R, R is a strong fair clique and thus the
algorithm returns true (line 1). Otherwise, we need to explore
the common neighbors to find if there exist cliques with size at
least An+ |R| that are also strong fair cliques. The IsMaximal
algorithm uses Ci to represent the vertices in C with the
attribute value ai. Clearly, if |Ci| = 0 holds for an arbitrary
attribute ai, the attribute constraint will not be satisfied and the
procedure outputs true, indicating R is maximal (lines 3-5).
Otherwise, StrongBackTrack tries to construct cliques from C.
The variables Record and SwapRecord are used to maintain
the current partial cliques. Finally, if Record is not empty, we
can find a clique with size at least An + |R|. In such case, R
is not a strong fair clique and the StrongBackTrack procedure
returns false (lines 6-14).

C. Handling the high-dimensional case
We note that the idea of the fairness degree based pruning

rule is not easy to extend to the high-dimensional cases,
because there may be 2An − 1−An MixGroups in the worst
case. Therefore, it is very difficult to compute the exact
fairness degree for each vertex when An > 2. To circumvent
this problem, we propose a heuristic greedy algorithm to
calculate an approximation of the fairness degree for each
vertex u, instead of deriving the exact fairness degree.

Specifically, we let GD(u) be the approximate fairness
degree computed by our greedy algorithm. By coloring, the
neighbors of a vertex u can be classified into hu color
groups. For each color cr, we have a group, denoted by
Group(cr). For a color group Group(cr), we let S(cr) be
the set of attributes of the vertices in Group(cr). For an
attribute ai, if ai ∈ S(cr) and |S(cr)| = 1 hold, we know
that the group Group(cr) only contains the vertices with the
attribute ai. For each attribute ai, we maintain a counter
cnt(ai) to record the number of color groups that only contain
vertices with ai. Clearly, |S(cr)| > 1 indicates a mix group
Group(cr). The greedy algorithm greedily assigns Group(cr)
to the attribute with the minimum number of color groups.
In other words, the algorithm increases the counter of am by

265

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 7: CalHeurOrd
Input: A connected graph G = (V,E)
Output: The HeurOD ordering O

1 O ← ∅; Q ← ∅;
2 Let B be an array with B(i) = false, 1 ≤ i ≤ |V |;
3 for u ∈ V do
4 for v ∈ N(u) do
5 Su(color(v), v.val) ← Su(color(v), v.val) + 1;

6 Let cnt be an array with cnt(i) = 0, 0 ≤ i < An;
7 for each color cr do
8 for ai ∈ Aval do
9 if Su(cr, ai) ≥ 1 then

10 am = argminai∈Su(cr,ai)
cnt(ai);

11 cnt(am) ← cnt(am) + 1;

12 GD(u) = min{cnt(ai), ai ∈ Aval};
13 Q.push(u,GD(u));

14 while Q �= ∅ do
15 u ← Q.pop(); O.push(u); B(u) ← true;
16 for v ∈ N(u) do
17 if B(v) = false then
18 Sv(color(u), u.val) ← Sv(color(u), u.val) − 1;
19 Calculate GD(v) and update Q as lines 6-13;

20 return O;

1 where am = argminaj∈S(cr) cnt(aj). Finally, GD(u) is
obtained by taking the minimum counter over all attributes,
i.e., GD(u) = min{cnt(ai), ai ∈ Aval}.

It is easy to see that the approximate fairness degree GD(u)
of a vertex u is always no larger than the exact fairness degree
of u, thus it cannot be directly used to prune vertices for
strong fair clique enumeration. This is because GD(u) is not
an upper bound of the size of the strong fair cliques containing
u. However, we can use the approximate fairness degrees to
derive a good heuristic ordering, because the vertices with
high exact fairness degrees tend to have high approximate
fairness degrees. Such a heuristic ordering can be applied to
reduce the search space for strong fair clique enumeration,
as confirmed in our experiments. Specifically, to obtain the
heuristic ordering denoted by HeurOD, we can iteratively
delete the vertex with the minimum GD (similar to the
procedure of computing ColorOD and FairOD). The pseudo-
code of our greedy algorithm to generate HeurOD is given in
Algorithm 7.

Theorem 3: Algorithm 7 takes O((V + E) × An × color)
using O(V ×An × color) space.

Proof: It is easy to derive that the time complexity to
compute GD for all vertices is O(E+V ×color×An) (lines 3-
13). The total cost to update the GD in line 19 is O(E ×
color × An). Therefore, the total time complexity is O((V +
E) × An × color). For the space complexity, the algorithm
takes O(V × color×An) space to maintain all Su, and O(V)
to maintain all GD. Thus, the total space overhead of the
algorithm is O(V ×An × color). �
The enumeration algorithm. Algorithm 5 can be easily
extended to handle the high-dimensional case. Note that
FairnessCore and FairOD in Algorithm 5 do not work for
the high-dimensional case. However, we can use ColorfulCore
(Algorithm 1), which is designed for pruning unpromising ver-
tices in weak fair clique enumeration, to reduce search space
because a strong fair clique is always contained in a weak fair
clique. In addition, we use the ordering HeurOD computed by
Algorithm 7 for strong fair clique enumeration with An > 2.
Clearly, the StrongBackTrack procedure with the attribute-

TABLE I
DATASETS

Dataset n = |V | m = |E| dmax Description
Slashdot 82,169 504,230 2,252 Social network

Themarker 69,414 1,644,843 8,930 Social network
WikiTalk 2,394,385 5,021,410 100,029 Communication network
Flixster 2,523,387 7,918,801 1,474 Social network

alternatively-selection strategy in Algorithm 5 can be directly
applied to handle the An > 2 case. Therefore, we only need to
slightly modify Algorithm 5 to enumerate strong fair cliques
for the high-dimensional attributes. Specifically, in Algorithm
5, we use ColorfulCore instead of FairnessCore to prune the
unpromising vertices (line 2), and invoke Algorithm 7 to obtain
the HeurOD ordering to reduce the search space (line 7).

V. EXPERIMENTS

A. Experimental setup
We implement WFCEnum (Algorithm 3) for weak fair

clique enumeration. For strong fair clique enumeration, we
implement SFCEnum (Algorithm 5) equipped with 1) the
pruning technique FairnessCore (Algorithm 4) and the order-
ing FairOD for the 2D case; and 2) the pruning technique
ColorfulCore and the heuristic ordering HeurOD calculated
by Algorithm 7 for the high-dimensional case. Since there is
no existing algorithm that can be directly used to enumerate
fairness-aware cliques, we implement two baseline algorithms,
called BaseWeak and BaseStrong. For the weak fair clique
enumeration, BaseWeak first finds all maximal cliques using
the state-of-the-art Bron-Kerbosch algorithm with pivoting
technique [8], [41], and then filters them based on attribute
constraint to identify weak fair cliques. For the strong fair
clique enumeration, BaseStrong enumerates all cliques with
size larger than k×An, and then selects the strong fair cliques
among them based on the attribute and maximality constraints.
In addition, we also introduce two different basic orderings for
our fairness-aware clique enumeration algorithms. The first
ordering, called BfsOD, is obtained by performing breadth-
first search (BFS) to explore the graph (i.e., the BFS visiting
ordering of vertices); and the second ordering, called VidOD,
is obtained by sorting the vertices based on the vertices’ IDs.
We compare the BaseWeak (BaseStrong) with the WFCEnum
(SFCEnum) algorithms equipped with different orderings, i.e.,
BfsOD, VidOD and our proposed orderings. All algorithms are
implemented in C++. We conduct all experiments on a PC with
a 2.10GHz Inter Xeon CPU and 256GB memory. We set the
time limit for all algorithms to 3 hours, and use the symbol
“INF” to denote that the algorithm cannot terminate within 3
hours.

Datasets. We make use of four real-world graphs to evaluate
the efficiency of the proposed algorithms. Table I summarizes
the statistics of the datasets in our experiments. WikiTalk is
a communication network. Themarker, Slashdot and Flixster
are social networks. All datasets can be downloaded from
networkrepository.com/ and snap.stanford.edu. Note that all
these datasets are non-attributed graphs, thus we randomly
assign an attribute to each vertex to generate attributed graphs
which will be used to evaluate the efficiency of all algorithms.

Parameters. There are two parameters in our algorithms: k
and d = An. The parameter k is the threshold for fair cliques
and d is the number of attribute values (i.e., the attribute
dimension). Since different datasets have various scales, the
parameter k is set within different integers. For Themarker,

266

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

0

1K

2K

3K

4K

5K

 9 10 11 12 13

V
er

ti
ce

s

k

ColorfulCore
FairnessCore

(a) Slashdot (vary k)

10K

12K

14K

16K

18K

 7 8 9 10 11

V
er

ti
ce

s

k

ColorfulCore
FairnessCore

(b) Themarker (vary k)

4K

6K

8K

10K

12K

 9 10 11 12 13

V
er

ti
ce

s

k

ColorfulCore
FairnessCore

(c) WikiTalk (vary k)

0

4K

8K

12K

16K

 9 10 11 12 13

V
er

ti
ce

s

k

ColorfulCore
FairnessCore

(d) Flixster (vary k)

100

1K

10K

100K

 2 3 4 5 6

V
er

ti
ce

s

d

ColorfulCore
original graph

(e) Slashdot (vary d)

0

20K

40K

60K

80K

 2 3 4 5 6

V
er

ti
ce

s

d

ColorfulCore
original graph

(f) Themarker (vary d)

1K

10K

100K

1M

10M

 2 3 4 5 6

V
er

ti
ce

s

d

ColorfulCore
original graph

(g) WikiTalk (vary d)

100

1K

10K

100K

1M

10M

 2 3 4 5 6

V
er

ti
ce

s

d

ColorfulCore
original graph

(h) Flixster (vary d)

Fig. 2. The number of remaining vertices after performing ColorfulCore and FairnessCore

1

10

100

1K

10K

 9 10 11 12 13

Ti
m

e
(s

ec
)

k

BaseWeak
ColorOD

BfsOD
VidOD

(a) Slashdot (vary k)

10

100

1K

10K

INF

 7 8 9 10 11

Ti
m

e
(s

ec
)

k

BaseWeak
ColorOD

BfsOD
VidOD

(b) Themarker (vary k)

0
2K
4K
6K
8K

10K
INF

 9 10 11 12 13

Ti
m

e
(s

ec
)

k

BaseWeak
ColorOD

BfsOD
VidOD

(c) WikiTalk (vary k)

1

10

100

1K

10K

INF

 9 10 11 12 13

Ti
m

e
(s

ec
)

k

BaseWeak
ColorOD

BfsOD
VidOD

(d) Flixster (vary k)

1

10

100

1K

10K

INF

 2 3 4 5 6

Ti
m

e
(s

ec
)

d

BaseWeak
ColorOD

BfsOD
VidOD

(e) Slashdot (vary d)

10

100

1K

10K

INF

 2 3 4 5 6

Ti
m

e
(s

ec
)

d

BaseWeak
ColorOD

BfsOD
VidOD

(f) Themarker (vary d)

1

10

100

1K

10K

INF

 2 3 4 5 6

Ti
m

e
(s

ec
)

d

BaseWeak
ColorOD

BfsOD
VidOD

(g) WikiTalk (vary d)

1

10

 100

 1K

10K

INF

 2 3 4 5 6

Ti
m

e
(s

ec
)

d

BaseWeak
ColorOD

BfsOD
VidOD

(h) Flixster (vary d)

Fig. 3. Running time of the BaseWeak algorithm and WFCEnum algorithms with different orderings

k is chosen from the interval [7, 11] with a default value of
k = 4. For the other datasets, k is chosen from the interval
[9, 13] with a default value k = 5. The parameter d is chosen
from the interval [2, 6] with a default value of d = 2. Unless
otherwise specified, the values of the other parameters are set
to their default values when varying a parameter.

B. Efficiency testing

Evaluation of the pruning techniques. For the 2D case
(d = 2), both ColorfulCore and FairnessCore can be used
to reduce the graph size in the SFCEnum algorithm. In this
experiment, we first evaluate these two pruning techniques
by comparing the number of remaining vertices after pruning
with varying k. The results are depicted in Fig. 2 (a)-(d). As
expected, both ColorfulCore and FairnessCore can significantly
reduce the number of vertices compared to the original graph.
For example, in Slashdot with k = 9, ColorfulCore reduces
the number of vertices from 82,169 to 3,985; and FairnessCore
further reduces the number of vertices to 1,335. In general,
FairnessCore consistently outperforms ColorfulCore in terms
of the pruning performance, especially for relatively small
k values. As expected, when k goes larger, the number of
remaining vertices becomes smaller. Additionally, we can
also observe that the pruning performance of ColorfulCore
is slightly worse than that of FairnessCore for a large k.
This is because FairnessCore first invokes ColorfulCore to
prune unpromising vertices. Since ColorfulCore is already
able to prune a large number of vertices when k is large,
FairnessCore cannot further prune too many vertices after

invoking ColorfulCore. These results confirm that our pruning
techniques are indeed very effective to reduce the graph size.

Note that for the high-dimensional case (d ≥ 3), only the
ColorfulCore algorithm can be used to prune the unpromis-
ing vertices in both WFCEnum and SFCEnum. Therefore,
we further study how the dimension d affects the pruning
performance of ColorfulCore. Fig. 2 (e)-(h) show the number
of remaining vertices after invoking ColorfulCore with varying
d. As can be seen, ColorfulCore can substantially reduce the
number of vertices with different d values overall datasets,
which is consistent with our previous findings. In general, the
number of remaining vertices decreases as d increases. This is
because with a larger d, the constraints of ColorfulCore become
stricter, thus more vertices can be pruned. These results further
confirm the effectiveness of the proposed pruning techniques.

Evaluation of WFCEnum. Here we compare the BaseWeak
and the WFCEnum algorithms equipped with BfsOD, VidOD
and ColorOD by varying k and d. The results are depicted in
Fig. 3. As can be seen, BaseWeak can only output the results
on Slashdot and cannot terminate within the time limit on
the other datasets. Our WFCEnum algorithm, however, can
work well on most datasets. The running time of BaseWeak
is insensitive w.r.t. k and d, but the runtime of our WFCEnum
algorithm decreases as k or d increases as expected. Moreover,
we can see that the runtime of WFCEnum is several orders
of magnitude lower than that of BaseWeak for a large k or d.
For example, on Slashdot with k = 11, WFCEnum takes 268
seconds to enumerate all weak fair cliques, while BaseWeak
consumes 10,665 seconds. This is because BaseWeak needs to

267

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

enumerate all maximal cliques, which is the main bottleneck
of the algorithm. For a large k, WFCEnum can prune many
vertices by the colorful k-core based pruning technique and
the search space can also be reduced during the backtracking
procedure. For a large d, the number of weak fair cliques
decreases with an increasing d, thus reducing time overheads.
These results confirm that the proposed WFCEnum algorithm
is much more efficient than BaseWeak to find all weak fair
cliques on large graphs.

In addition, we can also see that WFCEnum with ColorOD
is much faster than WFCEnum with BfsOD and VidOD. For
instance, when k = 11, WFCEnum with ColorOD consumes 4
seconds to output all results on Flixster, while WFCEnum with
BfsOD and VidOD takes 25 and 633 seconds, respectively.
On the Themarker dataset, when k = 7, the running time
of WFCEnum with ColorOD is 5,550 seconds, while the
two baseline algorithms cannot finish within 3 hours. These
results indicate that the proposed algorithm is very efficient to
enumerate all weak fair cliques in large real-life graphs. Also,
the results confirm the effectiveness of the proposed ordering
technique ColorOD.

Evaluation of SFCEnum. We evaluate the runtime of
SFCEnum with varying k and d. Since the proposed FairOD
is tailored for d = 2, we only evaluate SFCEnum with
FairOD by varying k. The experimental results of SFCEnum
are illustrated in Fig. 4. In general, the runtime of SFCEnum
decreases as k or d increases. This is because for a larger k
or d, there are fewer cliques satisfying the definition of strong
fair clique, thus the runtime for enumerating all strong fair
cliques decreases. Additionally, we can see that the SFCEnum
algorithms with FairOD and HeurOD are faster than those with
BfsOD and VidOD. For example, for k = 8 on Themarker,
the SFCEnum algorithms equipped with FairOD and HeurOD
consume 2,686 seconds and 2,789 seconds respectively, while
the SFCEnum algorithms with BfsOD and VidOD take 4,225
and 4,834 seconds to output all strong fair cliques respectively.
These results confirm the effectiveness of the proposed order-
ing techniques.

Additionally, by comparing BaseStrong and SFCEnum, we
find that the running time of BaseStrong on all datasets
exceeds the time limit, thus we do not show them in Fig. 4. The
proposed SFCEnum algorithms, however, work well on most
datasets. As aforementioned, to enumerate strong fair cliques,
BaseStrong needs to find all cliques with size larger than
k×An first. The number of such cliques are often extremely
large, thus the running time of BaseStrong is significantly
higher than SFCEnum.

The number of fairness-aware cliques. Fig. 5 (a)-(d) shows
the numbers of weak fair cliques and strong fair cliques
with different k. Clearly, there are significant numbers of fair
cliques in each dataset. In general, the number of strong fair
cliques is larger than that of weak fair cliques. This finding
is consistent with our analysis in Section II, since a weak fair
clique often contains a set of strong fair cliques. Additionally,
we can see that the number of fair cliques decreases when k
increases. This is because with a larger k, both the fairness
and clique constraints become stricter, thus resulting in less
number of fair cliques. Similar results can also be observed
when varying d from Fig. 5 (e)-(h).

Scalability testing. To evaluate the scalability of the proposed
algorithms, we generate four subgraphs for each dataset by

randomly picking 20%-80% of the edges, and evaluate the
runtime of all the proposed algorithms. Fig. 6 illustrates the
results on Flixster. The results on the other datasets are
consistent. In Fig. 6(a), the runtime of WFCEnum with BfsOD
and VidOD increases sharply as the graph size increases, while
for ColorOD, it increases smoothly with varying m. Moreover,
the ColorOD ordering performs much better than the other
orderings with all parameter settings, which is consistent with
our previous findings. Analogously, when varying m, the run-
time of SFCEnum with BfsOD and VidOD increases sharply
with respect to the graph size. However, for SFCEnum with
FairOD and HeurOD, the runtime increases smoothly with m
increases. These results demonstrate the high scalability of the
proposed algorithms.

Memory overhead. Fig. 7 shows the memory overheads of
the enumeration algorithms with different orderings on all
datasets. Note that the memory costs of different algorithms
do not include the size of the graph. From Fig. 7, we
can see that the memory usages of different algorithms are
always smaller than the graph size. This is because both
the WFCEnum and SFCEnum algorithms follow a depth-first
manner, thus the space overhead is linear. Additionally, we
can see that the memory usages are robust w.r.t. (with respect
to) different orderings. This is because the space usage in the
enumeration procedure is mainly dominated by the depth of
the enumeration tree. Since the tree depth is determined by
the clique size, the space overhead is insensitive w.r.t. different
orderings.

C. Case study

We conduct a case study on a collaboration network DBLP
to evaluate the effectiveness of our algorithms. The DBLP
dataset is downloaded from dblp.uni-trier.de/xml/. We extract
a subgraph DBCS from DBLP which contains the authors who
had published at least one paper in the database (DB), data
mining (DM), and artificial intelligence (AI) related confer-
ences. The DBCS subgraph contains 52,106 vertices (authors)
and 341,382 undirected edges. The attribute A represents the
author’s main research area with Aval = {DB,DM,AI}.
Each vertex has one attribute value selected from the set
Aval. We set the attribute value for each vertex based on the
maximum number of papers that the author published in the
related conferences. For example, if an author has published
20 papers in DB related conferences and 5 papers in DM
related conferences, we choose DB as the author’s attribute
value.

We perform WFCEnum and SFCEnum to find all weak
fair cliques and strong fair cliques on DBCS with k = 2.
Both algorithms apply ColorfulCore to prune the unpromising
vertices. The remaining graph after pruning by ColorfulCore
only has 61 vertices and 516 edges. Fig. 8(a) illustrates a
weak fair clique with size 10, which involves 6 authors of
DB, 2 authors of DM and 2 authors of AI . We use different
colors to represent the main research area of these authors,
namely, green = DB, pink = DM , and blue = AI . Clearly,
the number of vertices with different attribute values is no
less than k = 2. These results indicate that WFCEnum can
find relatively-fair communities with diverse research areas.
However, in Fig. 8(a), the weak fair clique is imbalanced (w.r.t.
different attributes) due to the high percentage of authors with
DB. Fig. 8(b) and Fig. 8(c) show two strong fair cliques which

268

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

1

10

100

1K

10K

INF

 9 10 11 12 13

T
im

e
(s

ec
)

k

FairOD
HeurOD

BfsOD
VidOD

(a) Slashdot (vary k)

1K

2K

3K

4K

5K

INF

 7 8 9 10 11

T
im

e
(s

ec
)

k

FairOD
HeurOD

BfsOD
VidOD

(b) Themarker (vary k)

10

100

1K

10K

INF

 9 10 11 12 13

T
im

e
(s

ec
)

k

FairOD
HeurOD

BfsOD
VidOD

(c) WikiTalk (vary k)

0

1K

2K

3K

INF

 9 10 11 12 13

T
im

e
(s

ec
)

k

FairOD
HeurOD

BfsOD
VidOD

(d) Flixster (vary k)

0

100

200

300

400

INF

 2 3 4 5 6

T
im

e
(s

ec
)

d

HeurOD
BfsOD
VidOD

(e) Slashdot (vary d)

0

500

1K

1.5K

2K

INF

 2 3 4 5 6

T
im

e
(s

ec
)

d

HeurOD
BfsOD
VidOD

(f) Themarker (vary d)

10

100

1K

INF

 2 3 4 5 6

T
im

e
(s

ec
)

d

HeurOD
BfsOD
VidOD

(g) WikiTalk (vary d)

0

250

500

750

1K

INF

 2 3 4 5 6

T
im

e
(s

ec
)

d

HeurOD
BfsOD
VidOD

(h) Flixster (vary d)

Fig. 4. Running time of the SFCEnum algorithms with different orderings

1

100

10K

1M

100M

 9 10 11 12 13

cl
iq

ue
s

k

WeakNum
StrongNum

(a) Slashdot (vary k)

0

10

1K

100K

10M

1B

 7 8 9 10 11

cl
iq

ue
s

k

WeakNum
StrongNum

(b) Themarker (vary k)

0

10

1K

100K

10M

 9 10 11 12 13

cl
iq

ue
s

k

WeakNum
StrongNum

(c) WikiTalk (vary k)

0

10

1K

100K

10M

1B

 9 10 11 12 13

cl
iq

ue
s

k

WeakNum
StrongNum

(d) Flixster (vary k)

0

10

1K

100K

10M

1B

 2 3 4 5 6

cl
iq

ue
s

d

WeakNum
StrongNum

(e) Slashdot (vary d)

0

10

1K

100K

10M

1B

 2 3 4 5 6

cl
iq

ue
s

d

WeakNum
StrongNum

(f) Themarker (vary d)

0

10

1K

100K

10M

1B

 2 3 4 5 6

cl
iq

ue
s

d

WeakNum
StrongNum

(g) WikiTalk (vary d)

0

10

1K

100K

10M

1B

 2 3 4 5 6

cl
iq

ue
s

d

WeakNum
StrongNum

(h) Flixster (vary d)

Fig. 5. The number of weak fair cliques and strong fair cliques on various datasets

0

2K

4K

6K

8K

INF

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

ColorOD
BfsOD
VidOD

(a) Flixster, WFCEnum (vary m)

0

3K

6K

9K

12K

INF

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

FairOD
HeurOD

BfsOD
VidOD

(b) Flixster, SFCEnum (vary m)

Fig. 6. Scalability of WFCEnum and SFCEnum

 0

 50

 100

 150

 200

 250

Slashdot Themarker WikiTalk Flixster

M
em

or
y (

M
B)

Graph size
BfsOD
VidOD

ColorOD

(a) WFCEnum

 0

 50

 100

 150

 200

 250

Slashdot ThemarkerWikiTalk Flixster

M
em

or
y (

M
B)

Graph size
BfsOD
VidOD
FairOD

HeurOD

(b) SFCEnum

Fig. 7. Memory overhead

are also subgraphs of the clique in Fig. 8(a). This is consistent
with the finding that a strong fair clique must be contained in
a weak fair clique. As expected, the number of authors with
different attribute values is exactly equal to 2, thus it can avoid
the attribute imbalance problem in the weak fair clique. These
results demonstrate that both WFCEnum and SFCEnum can
be used to find fair communities with diverse attributes; and
SFCEnum can further keep balance over different attributes in
the community. Moreover, this case study also indicates that
the weak fair cliques and strong fair cliques show the scholars
of different research areas who cooperate with each other, and
further reflect the closeness of different research areas. That is,
the closer these areas are, the larger fair cliques will be. If no
fair clique can be found, then it means that at least one research
area has no obvious connection to others. The fairness-aware

(a) weak fair clique (k = 2)

(b) strong fair clique (k = 2) (c) strong fair clique (k = 2)

Fig. 8. Results on DBCS with Aval = {DB,DM,AI}
clique models aim to find balance among different attributes,
which are suitable to be used at cross-cutting areas.

D. Discussions

As shown in our experiments, seeking a suitable k for our
fair clique model is important for practical applications. Here
we introduce a heuristic method to find an appropriate k.
Since the sizes of fair cliques are clearly no larger than the
maximum clique size of the graph, we can first compute the
maximum clique size of a graph by using the state-of-the-art
maximum clique search algorithms [9], [37]. Suppose the size
of a maximum clique is Cmax. Then, the parameter k in our

269

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

fair clique models satisfies k ≤ 	Cmax

An

. Note that when the

maximum clique size is hard to compute for some instances, an
alternative solution is to compute an approximation of Cmax

by using a linear-time greedy algorithm [34]. Therefore, for a
particular application, we can use a binary search method to
find an appropriate k from the interval [1, 	Cmax

An

] by invoking

the proposed algorithms to compute the fair cliques.

VI. RELATED WORK

Attributed graph mining. Our work is related to attributed
graph mining which has attracted much attention in data min-
ing due to the diverse applications [13], [19], [24], [33], [43],
[45]. For example, Li et al. [24] propose an embedding-based
model to discover communities in attributed graphs. Tong et al.
[43] studied the problem of finding subgraphs for given query
patterns in attributed graphs. Fang et al. [13] investigated
the attributed community search problem and developed an
index structure, called CL-tree, to efficiently support attributed
community search. Khan et al. [19] proposed an algorithm
to mine subgraphs such that the vertices in the subgraph are
closely connected and each vertex contains as many query
keywords as possible. Pizzuti et al. [33] introduced a com-
munity mining algorithm for attributed graphs that considers
both node similarity and structural connectivity. In this paper,
we study a problem of mining fair communities (fair cohesive
subgraph) in attributed graphs. To the best of our knowledge,
our work is the first to study the fair community search
problem in attributed networks.

Fairness-aware data mining. Our work is related to fairness-
aware data mining which has been recognized as an important
issue in data mining and machine learning. To measure fair-
ness, many concepts have been proposed in the literature [44].
Zehlike et al. [50] proposed a method to generate a ranking
with a guaranteed group fairness, which can ensure the propor-
tion of protected elements in the rank is no less than a given
threshold. Serbos et al. [36] investigated a problem of fairness
in package-to-group recommendation, and proposed a greedy
algorithm to find approximate solutions. Beutel et al. [5] also
studied fairness in recommendation systems and presented a
set of metrics to evaluate algorithmic fairness. Another line of
research on fairness was studied in classification algorithms.
Some notable work including demographic parity [11] and
equality of opportunity [15]. For instance, Hardt et al. [15]
proposed a framework that can optimally adjust any learned
predictor to reduce bias. Compare to the existing studies, our
definition of fairness which requires the equality of different
attribute values in a group is different from those in the
machine learning literature.

Cohesive subgraph mining. Our work is also related to
cohesive subgraph mining. Clique is an important cohesive
subgraph model and there are numerous studies that focus on
clique mining. Finding maximum cliques, aiming to discover
the cliques with the largest size, has attracted much attention.
The algorithms for maximum clique search are mainly based
on the branch-and-bound framework [30], [21]. Ostergard
et al. [30] presented a branch-and-bound algorithm with the
vertex order taken from a coloring of the vertices. Konc et al.
[21] proposed an approximate coloring algorithm and used it
to provide bounds of the size of the maximum clique. Tomita
et al. proposed a series of maximum clique algorithms, called
MCQ [39], MCR [38], MCS [40] and MCT [37], [42], based

on the coloring technique. All these algorithms either use the
coloring technique to obtain an upper bound of the maximum
clique or apply the coloring heuristics to design a branching
strategy. Moreover, all these algorithms are mainly tailored to
non-attribute graphs. Different from these works, we use the
coloring technique to develop a k-core based graph reduction
approach; and our work aims to find fairness-aware cliques in
attribute graphs.

Another researching problem of clique mining is to enu-
merate maximal cliques. The well-known algorithm for enu-
merating all maximal cliques is the classic Bron-Kerbosch
(BK) algorithm [8]. Tomita et al. [41] proposed an algorithm,
using a greedy pivoting technique, to find all maximal cliques.
Eppsten et al. [12] further improved the BK algorithm based
on a heuristic degeneracy ordering. In addition, some relaxed
definitions of clique were also proposed, such as n-clique [2],
n-clan, n-club [28], k-plex [3], [35], quasi-clique [1], [32],
k-core [10], [20], [29], and so on [7]. However, the solutions
mentioned above are not tailored for attributed graphs, thus
cannot be directly used to solve our problems. In this work, we
develop novel algorithms to compute maximal fair cliques in
attributed graphs with several non-trivial pruning techniques.

VII. CONCLUSION

In this paper, we study a problem of enumerating fairness-
aware cliques in an attributed graph. To this end, we propose
a weak fair clique model and a strong fair clique model.
To enumerate all weak fair cliques, we first present a novel
colorful k-core based pruning technique to prune unpromising
vertices, and then we develop a backtracking algorithm with a
carefully-designed ordering technique to enumerate all weak
fair cliques in the pruned graph. To enumerate all strong
fair cliques, we propose a new fairness k-core based pruning
algorithm for the 2D case, and then develop a backtracking
algorithm with a fairness k-core based ordering technique to
enumerate all strong fair cliques. We also present a strong
fair clique enumeration algorithm with a heuristic ordering
for handling-high dimensional case. We conduct extensive
experiments using four large real-life graphs, and the results
demonstrate the efficiency and effectiveness of the proposed
algorithms.

There are several future directions deserved to further in-
vestigate. First, the proposed models are based on the concept
of clique which may be strict for some real-life applications.
A promising direction is to relax the clique model used in our
definitions, and apply other models (e.g., k-truss) to define
the fairness-aware cohesive subgraphs. Second, the proposed
pruning technique is mainly based on the colorful k-core. An
interesting question is that can we develop a colorful k-truss
based pruning technique? Since k-truss is often much denser
than k-core, such a pruning technique may be more powerful
than our colorful k-core based technique. Finally, it is also
interesting to develop more efficient branching and ordering
techniques to further speed up the backtracking enumeration
procedure.
Acknowledgement. This work was partially supported by (i)

National Key Research and Development Program of China

2020AAA0108503, (ii) NSFC Grants 62072034, U1809206, and

61772346. Rong-Hua Li is the corresponding author of this paper.

270

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] James Abello, Mauricio GC Resende, and Sandra Sudarsky. Massive
quasi-clique detection. In Latin American symposium on theoretical
informatics, pages 598–612, 2002.

[2] Richard D Alba. A graph-theoretic definition of a sociometric clique.
Journal of Mathematical Sociology, 3(1):113–126, 1973.

[3] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V Hicks. Clique
relaxations in social network analysis: The maximum k-plex problem.
Operations Research, 59(1):133–142, 2011.

[4] Vladimir Batagelj and Matjaz Zaversnik. An o(m) algorithm for cores
decomposition of networks. CoRR, cs.DS/0310049, 2003.

[5] Alex Beutel, Jilin Chen, Tulsee Doshi, et al. Fairness in recommendation
ranking through pairwise comparisons. In SIGKDD, 2019.

[6] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. Mining
market data: a network approach. Computers & Operations Research,
33(11):3171–3184, 2006.

[7] Stephen P Borgatti, Martin G Everett, and Paul R Shirey. Ls sets, lambda
sets and other cohesive subsets. Social networks, 12(4):337–357, 1990.

[8] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Communications of the ACM, 16(9):575–577, 1973.

[9] Lijun Chang. Efficient maximum clique computation over large sparse
graphs. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,
Evimaria Terzi, and George Karypis, editors, KDD, 2019.

[10] Sergey N Dorogovtsev, Alexander V Goltsev, and Jose Ferreira F
Mendes. K-core organization of complex networks. Physical review
letters, 96(4):040601, 2006.

[11] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Richard Zemel. Fairness through awareness. In ITCS, 2012.

[12] David Eppstein and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. In SEA, pages 364–375, 2011.

[13] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. Effective
community search for large attributed graphs. VLDB, 9(12):1233–1244,
2016.

[14] Tobias Friedrich and Anton Krohmer. Cliques in hyperbolic random
graphs. In INFOCOM, 2015.

[15] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in
supervised learning. In NIPS, 2016.

[16] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E.
Leiserson. Ordering heuristics for parallel graph coloring. In SPAA,
2014.

[17] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu.
Querying k-truss community in large and dynamic graphs. In SIGMOD,
2014.

[18] Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39.
2011.

[19] Abeer Khan, Lukasz Golab, Mehdi Kargar, et al. Compact group dis-
covery in attributed graphs and social networks. Information Processing
& Management, 57(2):102054, 2020.

[20] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex
Thomo. K-core decomposition of large networks on a single pc. VLDB,
9(1):13–23, 2015.

[21] Janez Konc and Dušanka Janezic. An improved branch and bound
algorithm for the maximum clique problem. proteins, 4(5), 2007.

[22] Rong-Hua Li, Qiangqiang Dai, Guoren Wang, Zhong Ming, Lu Qin,
and Jeffrey Xu Yu. Improved algorithms for maximal clique search in
uncertain networks. In ICDE, 2019.

[23] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. Influential
community search in large networks. PVLDB, 8(5):509–520, 2015.

[24] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. Community
detection in attributed graphs: An embedding approach. In AAAI, 2018.

[25] David W. Matula and Leland L. Beck. Smallest-last ordering and
clustering and graph coloring algorithms. J. ACM, 30(3):417–427, 1983.

[26] David W Matula, George Marble, and Joel D Isaacson. Graph coloring
algorithms. In Graph theory and computing, pages 109–122. 1972.

[27] John Mitchem. On various algorithms for estimating the chromatic
number of a graph. The Computer Journal, 19(2):182–183, 1976.

[28] Robert J Mokken et al. Cliques, clubs and clans. Quality & Quantity,
13(2):161–173, 1979.

[29] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi.
Distributed k-core decomposition. TPDS, 24(2):288–300, 2012.

[30] Patric RJ Östergård. A fast algorithm for the maximum clique problem.
Discrete Applied Mathematics, 120(1-3):197–207, 2002.

[31] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and
Ploutarchos Spyridonos. Community detection in social media. Data
Mining and Knowledge Discovery, 24(3):515–554, 2012.

[32] J Pardalos and M Resende. On maximum clique problems in very large
graphs. DIMACS series, 50:119–130, 1999.

[33] Clara Pizzuti and Annalisa Socievole. A genetic algorithm for commu-
nity detection in attributed graphs. In EvoApplications, pages 159–170,
2018.

[34] Ryan A Rossi, David F Gleich, and Assefaw H Gebremedhin. Parallel
maximum clique algorithms with applications to network analysis. SIAM
Journal on Scientific Computing, 37(5):C589–C616, 2015.

[35] Stephen B Seidman and Brian L Foster. A graph-theoretic generalization
of the clique concept. Journal of Mathematical sociology, 6(1):139–154,
1978.

[36] Dimitris Serbos, Shuyao Qi, Nikos Mamoulis, Evaggelia Pitoura, and
Panayiotis Tsaparas. Fairness in package-to-group recommendations. In
WWW, 2017.

[37] Etsuji Tomita. Efficient algorithms for finding maximum and maximal
cliques and their applications. In Sheung-Hung Poon, Md. Saidur
Rahman, and Hsu-Chun Yen, editors, WALCOM, 2017.

[38] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound
algorithm for finding a maximum clique with computational experi-
ments. J. Glob. Optim., 44(2):311, 2009.

[39] Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound
algorithm for finding a maximum clique. In Cristian Calude, Michael J.
Dinneen, and Vincent Vajnovszki, editors, DMTCS, 2003.

[40] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and
Mitsuo Wakatsuki. A simple and faster branch-and-bound algorithm for
finding a maximum clique. In Md. Saidur Rahman and Satoshi Fujita,
editors, WALCOM, 2010.

[41] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case
time complexity for generating all maximal cliques and computational
experiments. Theoretical computer science, 363(1):28–42, 2006.

[42] Etsuji Tomita, Kohei Yoshida, Takuro Hatta, Atsuki Nagao, Hiro Ito,
and Mitsuo Wakatsuki. A much faster branch-and-bound algorithm for
finding a maximum clique. In Daming Zhu and Sergey Bereg, editors,
FAW, 2016.

[43] Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-
Rad. Fast best-effort pattern matching in large attributed graphs. In
SIGKDD, 2007.

[44] Sahil Verma and Julia Rubin. Fairness definitions explained. In
FairWare, 2018.

[45] Ye Wu, Zhinong Zhong, Wei Xiong, and Ning Jing. Graph summariza-
tion for attributed graphs. In ISEEE, volume 1, pages 503–507, 2014.

[46] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A
model-based approach to attributed graph clustering. In SIGMOD, 2012.

[47] Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection
in networks with node attributes. In ICDM, 2013.

[48] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein.
Predicting interactions in protein networks by completing defective
cliques. Bioinformatics, 22(7):823–829, 2006.

[49] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang.
Index-based densest clique percolation community search in networks.
IEEE Trans. Knowl. Data Eng., 30(5):922–935, 2018.

[50] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mo-
hamed Megahed, and Ricardo Baeza-Yates. Fa* ir: A fair top-k ranking
algorithm. In CIKM, 2017.

271

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:04:59 UTC from IEEE Xplore. Restrictions apply.

